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Our problem: Coping with Novel Architectures 
to Optimize Software Performance 
•  End of hardware scaling laws around 2005 has led to novel hardware 

architectures  
–  Multi-core, many-core 
–  Accelerator techniques: Vector units, Graphics Processing Units (GPU) 
–  Pipelines, Prefetching, Speculative execution 

•  Hardware changes disruptive to performance of existing software code 
base. Require complex software changes by high-skill software 
architects/computational physicists 
–  Parallelism: distributed-memory, shared-memory, instruction-level  
–  Latency-hiding, data movement/motion, fault resilience 

•  Traditional coping strategies 
–  Software engineer skills improvement programs 
–  Middle-ware libraries  
–  Code instrumentation, mini-apps 

JAN 2016 
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Model of  “Computing” 

Time 

Computer 

Hardware 

Software 

Design Spaces 

Our Solution: Codesign Modeling to Predict 
Performance of Novel SW/Computational 
Methods on Novel HW Platforms 

Input Output 

Predicted 
Performance Measures 

Energy 

Key idea: Explore (Parameterized) SW and 
HW Design Spaces and Assess Algorithmic 

Variations 

JAN 2016 
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Project Phases (and Status January 2017): Model 
Validation before Design Space Exploration 

Node/Core Models 
Interconnect/MPI 
Filesystems (Lustre) 
Application Models 

SNAP 
SNSPH 
SpecTAD/ParSplice 
IMC/Branson 
CloverLeaf 
HPL 

Design/
Implement 

Model 

Validate 
Model* 

Explore SW 
and/or HW 
Variations 

Implement 
Promising SW/
HW Variation  

Alternative Funding Source Codesign Performance Prediction Project 

* HW and Middleware models to 
be validated against benchmark 
applications; Application models 
to be validated against actual 
platform runs  

Phases/
Tasks 
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Codes 

Simian – Parallel Discrete Simulation Engine 

Hardware Models  
•  Parameterized Model Hierarchy 

(Clusters, Nodes, Cores) 
e.g., Mustang, Trinity, Cielo, Titan, 
Moonlight, AMD Opteron, KNL, MacPro 

•  Parameterized Memory 
hierarchy, Pipeline Models for 
input (data dependency) graphs  

•  Accelerators 
K20X, K40, K6000, 
M2090, Pascal 

•  Interconnect 
Torus 
FatTree 
Butterfly 

 

Middle-
ware 
Models 

•  MPI 
•  OpenMP 

•  Legion 

Performance Prediction Toolkit (PPT): Jan 2017 
Rapid Prototyping Modeling (Python or Lua): Simple, Modular 

Application Models 

•  SNAPSim  Det. Transport 
•  SPHSim  Hydrodynamics 
•  IMCSim  Monte Carlo Transport 
•  MDSim  MD 

•  SpecTADSim  MD 
•  CWBJ “Jacobi”  Det. Transport 
•  CloverLeafSim  Hydrodynamics 
•  HPLSim (“Linpack”)  Benchmark 
•  HPCGSim  Benchmark 
•  PolyBenchSim  Benchmark 

•  ParboilSim GPU  Benchmark 
•  Misc 
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PPT: Hardware Modeling Approach 

1.  Define what hardware resource is modeled (e.g., core) 
2.  Define and set Hardware Parameters  

–  Example: Clock speed, cycles per ALU operation, cycles per RAM access, 
L2-cache size, … 

–  Set parameter values  (“First-principles”: according to (anticipated) spec 
sheets, or fitted to data) 

3.  Implement high-level instruction API to application/SW model 
(“tasklist”) 

–  Example: tasklist = [23 mem accesses, 55 float ops, 30 vec_ops] 
–  Function “compute(tasklist)” calculates the time it takes to execute tasklist 
–  NEW ALTERNATIVE: More complex basic-block-wise cycle-accurate 

TASK GRAPHLETS as input with data dependencies among code 
instruction (Talk by N. Santhi) 

JAN 2016 
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PPT: Software Modeling Approach 

1.  Model the loop structure of the code within a pseudo-code-like 
Simian Process, usually using MPI model, usually without 
computing the physics 

2.  Identify time-intensive inner loops to synthesize into API 
instructions (“tasklists”) for hardware model  

–  Expert opinion 
–  Code profiling 

3.  Synthesize inner loops (create “tasklists” or “task graphs”) through 
–  Manual method/code analysis 
–  Runtime analyses tools (architecture independent ByFL) 
–  NEW: Automated analysis on LLVM level for task-graph formation 

JAN 2016 

PPT is a tool (and design philosophy) mainly for  Application 
Developers, Code Teams, and perhaps Middleware Developers. 

Such a focus is unique among performance prediction tools 
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Application Models 

•  SPHSim 
•  IMCSim 

•  SNAPSim 
•  CWBJSim 
•  CloverSim 
 
•  HPLSim 
•  MD-related simulators 

–  MDSim, ParSplice, SpecTADSim 

Result Overview 
(Stephan) 

More detailed 
presentation 
(Joe) 

Separate talk  
(Rick Zamora) 
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I
I

I

I

I
I

Smoothed Particle Hydrodynamics: SPHSim 
[G. Chapuis et al., WinterSim 2016] 

•  SNSPH: Compute distance-dependent particle 
interactions through hierarchical Oct-Tree data 
structure as a latency-hiding mechanisms 

•  SPHSim: stochastic application model in Simian 
Lua  

•  Validate, Parameter study: no need for lower 
latency interconnect, physics kernel opt still 
useful 

I
I
I
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Implicit Monte Carlo: IMCSim 
[In preparation] 

Effect of Compute Kernel Time 

•  Implicit Monte Carlo (IMC) and the Branson mini-app are an example 
of non-deterministic radiation transport codes 

•  IMCSim enables us to study computation vs. communication trade-
offs and identifies optimal MPI parameter settings 

Validation: Strong scaling and Weak Scaling 
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High-Performance Linpack (HPL) - HPL-Sim 
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•  PPT Parallel Linpack Prediction under development 
–  HPL-Sim = HPL Algorithm + BLAS runtime estimates + PPT 

+ 

Motivation: 
(top500.org) 
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Exascale Molecular Dynamics 

TAPS
-Sim 
Predi
ction
s 

•  PPT is being leveraged by both BES and ECP projects to develop 
and plan the implementation of parallel Accelerated Molecular 
Dynamics (AMD) 
–  BES: Temperature-Accelerated Parallel Splicing (TAPS) 
–  ECP: Exascale Atomistic for Accuracy Length and Time (EXAALT) 
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SNAPSim 
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Developing SNAPSim for linear, deterministic 
transport applications from SNAP 
•  Deterministic transport for a structured grid of spatial 

“cells”, solving for a set of nang discrete directions of 
particle travel, moving at speeds within ng bins of energy 
“groups” 

•  Outer/inner iteration strategy to resolve group-to-group 
interactions (outer) and within group interactions (inner) 
–  Outer is a large matrix-vector multiplication 
–  Inner is a transport mesh sweep that updates solution guess for 

all cells, directions, groups in a highly ordered manner 

•  “Optimal” performance of sweeps is a long-studied 
computational science problem: requires mix of parallel 
strategies, balance of intranode and internode tradeoffs 



Slide 18 U N C L A S S I F I E D 

SNAPSim overview 

•  Execution time dominated by mesh sweeps and group-to-group calculations 
–  A priori knowledge of task graph and workload per task 
–  Fixed placement of tasks on cores à entities 
–  tasklist items that are relatively predictable 

Call time_compute with work chunk tasklist = [integer, float, vector, and memory ops]

Do a single sweep for each energy group:

  each process determines requirements

  wait until requirements are satisfied (with simulated MPI messages)

  advance simulation time with time_compute result

  determine dependents and send messages to inform chunks are complete

Call time_compute for outer source

For timestep_n:

  for outer_o:

    for inner_i:

      accumulate time from single sweep 

         accumulate time from single outer source calculation 
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Serial validation testing suite on Moonlight: 
500 jobs varying physical domain size 
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often represent 
less important 
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Moonlight strong and weak scaling tests with 
full interconnect and MPI models 
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Captures general trends. Larger problem necessary for weak scaling to 
observe more interesting trends associated with algorithm. 
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SNAPSim with threading middleware applied to 
parallelize work over energy groups 
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“Large” predicts better scaling, but ultimately captures same trend. Need 
to incorporate into MPI-decomposed simulator model and test. 



Slide 22 U N C L A S S I F I E D 

Using SNAPSim to predict alternate sweep 
schedule absent present SNAP capability 
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Does not reveal great benefit: need to test larger processor counts. Does reveal 
slight cost of overhead. Permits much faster exploration of scheduling choices. 



Slide 23 U N C L A S S I F I E D 

SNAPSim outlook 

•  Minor improvements for fidelity 
–  Material mapping 
–  Within group scattering operator 
–  Global operations (broadcasts, reductions) 

•  Better use of hardware model improvements for 
predicting on-node data motion 

•  Decrease simulator runtime 
–  Simulations can take too long to run 
–  SNAPSim itself does not scale well à insufficient parallel work of 

simulator 
–  Investigating options to improve runtime: Simplified 

communication model, use PyPy, etc. 
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Cell-wise Block-Jacobi: CWBJSim 
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Cell-Wise Block-Jacobi (CWBJ) sweeps 

•  At every iteration exchange incoming data from previous 
iteration across parallel spatial subdomains (chunks) 

•  No scheduling strategy (chunks executed simultaneously), 
just step through a chunk’s mesh cells in numeric order 

•  Solve a pAG × pAG linear system for p nodes, A angles and 
G energy groups on every mesh cell (LU solver dgetrf[s]) 

•  Investigate tradeoff between reduced scheduling complexity 
and increased flop count per chunk on different architectures 

0 1 

2 3 Chunk assigned to proc. 

4 mesh cells per chunk  
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Validation of cwbjsim-mpi.py on Cielito 

•  4×8×8 = 256 triangular cells: dx = dy = 10+4
 cm 

•  Square Chebyshev-Legendre (CL) Sn: n=2, …, 40 
•  g=1, c=0.99, σ=1 cm-1, q=1m-3/s 
•  N=3×g×n×n: dimension of phase space per triangle 
•  Vacuum BCs 
•  Iterative solver: GMRES(20), max it.=100, ε=10-5 

•  Np = 4, 8, 16 
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Validation results on Cielito 

•  float_alu_ops 
proportional to 
N3 from 
literature for LU 
factorization 
appears to drive 
curves’ trends at 
large N  

•  Code runs more 
optimally by 
spreading ranks 
across NUMA 
nodes at Np=4, 
8 

•  PPT does not 
yet capture 
effect of NUMA 
boundaries on 
node à OPEN 
QUESTION 
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Algorithmic variations for CWBJ 

•  Bundle group work: local matrix solve decreases 
quadratically with number of groups 

•  Parallel Block Jacobi: all scattering operations on RHS, 
solve with local mesh sweeps 

•  Consider performance per iteration: convergence 
separate 

•  Return to previous problem 
–  g=4 
–  Np=1 only 
–  Nb=1, 2, 4: number of group bundles: gb=4, 2, 1 
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Serial results on Moonlight 
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Modeling CWBJ speedup on Moonlight GPUs 

•  Leveraging GPU hardware model originally developed 
by Guillaume Chapuis for a Titan node 

•  Added to performance prediction toolkit hardware model 
for a Moonlight node (Intel Host + NVIDIA M2090 GPU) 

•  Added to GPUTest.py LU_APP test to simulate call to 
MAGMA dgetrf_gpu from GPU version of CWBJ 

•  To simplify generation of GPU task-list assume bulk of 
GPU work is in repeated call to dgemm_fermi.cu kernel 

•  For n=6 and g=1 initial case obtained good prediction 
(~0.08 ms) for actual kernel time (~0.09 ms) but overall 
dgetrf_gpu time appears to be higher (~1.8 ms)  
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Preliminary results for GPU model 
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CloverLeafSim 
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Eulerian hydro on a single-level mesh: 
CloverLeafSim 
•  Compressible Euler equations are used in a number of 

lab codes  
•  Finite volume formula common to a number of codes 

(Lagrangian step followed by advective remap)  
•  Explicit time integration is commonly used  
•  Fortran based (~4500 LoC) 
•  MPI, OpenMP, OpenACC, CUDA, OpenCL, PGAS 
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Validation against a 2D shock simulation 
ValidaDon	of	CloverSim:	ExecuDon	Time	



Slide 35 U N C L A S S I F I E D 

Table of Contents 

•  Introduction: Performance Prediction Toolkit (PPT) 
•  Application Models 
•  Middleware Models 
•  Hardware Models 
•  Parallel Discrete Event Simulation – Simian 
•  List of Publications, Presentations 
•  Outlook 



Slide 36 U N C L A S S I F I E D 

Middleware Models 

•  MPI 
–  Separate talk by Jason Liu (2 publications) 
–  Fairly comprehensive capability 

•  OpenMP 
–  Basic parallelized loop functionality implemented, used in 

SNAPSim 
–  Additional functionality to be added on demand 

•  Legion 
–  Postdoc hire with February start date will focus on a Legion 

model 

•  Interconnect models 
–  Separate talk on Torus, FatTree, Dragonfly 
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MPI & Interconnect Models 

•  Diverse models of interconnection networks 
–  All common topologies (torus, fat tree, dragonfly) 
–  Existing production systems and academic 

abstractions 
 

•  Easy integration with applications 
–  Stylized applications with focus on loop structures, 

important numerical kernels 
–  Incorporate detailed MPI operations: 

communication patterns 
 

•  Accurate and high-performance simulation of 
communication behavior 

–  Packet-level simulation (rather than phit-level simulation) 
provides sufficiently accurate results 

–  Fully parallelizable models 
–  Simian for just-in-time parallel discrete-event simulation 
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(Compute Node) Hardware Models 
•  Simple “First-Principles” parameter based models (“encode spec 

sheets”) with linear task lists 
–  Works ok for simple architectures, such as GPU 
–  Traditional CPU architectures: non-linearities due to memory hierarchies, 

pipelining, pre-fetching, and speculative execution. Low-level 
parallelism. Hard to find application-independent parameter values, 
albeit finding parameters for individual applications not too hard 

•  Learning-based hardware models  
–  Training sets generated from benchmark application runs 
–  Publication at ISC Workshop PMMA on energy use prediction 
–  Large-scale effort stopped after several attempts 

•  Static basic block simulation on pipeline models with reuse distance 
computation and branch probability analysis has potential to be a 
game-changer 
–  See talk by N. Santhi 
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Hardware Modeling: GPU Model Validation 

•  Publication received Best Paper Award at ValueTools2016 
•  Validation of three GPUs against Parboil benchmarks within 20%  
•  Performance Prediction of next generation Pascal GPU predicts 

speed-up of about 2.5 x 
•  Model is “first principles” values from spec sheet 

Validation Results for K6000  Performance Prediction for Pascal  

JAN 2016 
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Static Block Based Analysis,  
Memory, Pipeline Model 

Revised PPT Hardware Model 

1.ABF Analysis/
Solver (offline, block-

based) 

2.Statistic
al Memory 
Hierarchy 

Model 
(offline, block-

based) 

3.Simian 
Pipeline Model 
(pre-app simulation, 

block-based, 
architecture dependent) 

P(BBi) 

Tool produces 
ABF Linear 

System 

tMEM,av 

Algorithm
/Code 
(offline) 

Tool produces 
Memory traces 
per basic-block 

Application/
Middleware 

Models 

N(BBi), 
Opcodes in each basic-block 

arranged as a data dependency 
based taskgraph, 

Instruction latency & b/w table, 
Pipeline Port to Instruction map 

tBB_i 
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SimianJS under LA-PDES Benchmark Suite 

•  In barebones tests, SimianJS 
has reached event rates > 4 
million events/s in serial mode 
on Mac desktops, which is 2X 
better than SimianLua 

•  LA-PDES Benchmark Runs: 
SimianLua initially performs 
better with MPI over multiple 
machines – due to the efficient, 
JITed C/FFI in Luajit. At higher 
entity and rank counts, better 
memory management and 
garbage collection pulls 
SimianJS ahead. 

Two scenarios are plotted: (a) Single machine: there 
are 10,000 entities in total for each simulation (b) 
Multi machine: there are 640,000 entities in total for 
each simulation. A sufficiently large number of entities 
ensures that strong scaling is apparent at higher rank 
counts. 
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SimianJS Architecture, MPI4JS 

•  SimianJS is implemented over a LANL 
customized Mozilla Spidermonkey 
open-source codebase 

•  MPI4JS interface was developed to 
support JS-native calls to MPI from 
usual stand-alone (not browser based) 
Javascript code 

•  Several other useful C functions are 
also exposed to the Javascript side 

•  As a PDES engine, SimianJS user-API 
closely mirrors both SimianLua and 
SimianPie. Use of MPI for simulation is 
optional. 

User’s PDES Model Code in 
Javascript 
SimianJS Kernel 

Spidermonkey JIT Engine 

MPI4JS Layer (Optional) 

MPI (MPICH/OpenMPI C/C++) 

NW/OS/Hardware etc 
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Proceedings of 2nd International Workshop on Performance Modeling: Methods and Applications (PMMA16), at 
ISC High Performance 2016, Frankfurt, Germany, June 23 

4.  Qiang Guan, Nathan BeBardeleben, Panruo Wu, Stephan Eidenbenz, Sean Blanchard, Laura Monroe, Elisabeth 
Baseman, and Li Tan. 2016.  
Design, Use and Evaluation of P-FSEFI: A Parallel Soft Error Fault Injection Framework for Emulating Soft Errors 
in Parallel Applications.  
In Proceedings of the 9th EAI International Conference on Simulation Tools and Techniques (SIMUTOOLS'16). 
ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), ICST, Brussels, 
Belgium, Belgium, 9-17. 

5.  Kishwar Ahmed, Mohammad Obaida, Jason Liu, Stephan Eidenbenz, Nandakishore Santhi, Guillaume Chapuis: 
An Integrated Interconnection Network Model for Large-Scale Performance Prediction.  
ACM SIGSIM-PADS 2016: 177-187 
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Publications 3/3 

Peer-reviewed Conference Proceedings 
6.  N. Prajapati, W. Ranasinghe, S. Rajopadhye, R. Andonov, H. Djidjev, and T. Grosser: 

Simple, Accurate, Analytical Time Modeling and Optimal Tile Size Selection for GPGPU Stencils  
22nd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP), 2017. 

7.  Joan Boyar, Stephan J. Eidenbenz, Lene M. Favrholdt, Michal Kotrbcik, Kim S. Larsen: 
Online Dominating Set  
Proceedings of SWAT 2016: 21:1-21:15, also available as arXiv preprint arXiv:1604.05172 

8.  Guillaume Chapuis, Stephan Eidenbenz, Nandakishore Santhi: 
GPU Performance Prediction Through Parallel Discrete Event Simulation and Common Sense 
Proceedings of the 9th EAI International Conference on Performance Evaluation Methodologies and Tools 
(VALUETOOLS 2015), pp 204 -2011, 2015 

9.  Guillaume Chapuis, Stephan Eidenbenz, Nandakishore Santhi, Eun Jung Park: 
Simian integrated framework for parallel discrete event simulation on GPUs.  
Winter Simulation Conference 2015: 1127-1138 

10.  Eunjung Park, Stephan Eidenbenz, Nandakishore Santhi, Guillaume Chapuis, Bradley W. Settlemyer: 
Parameterized benchmarking of parallel discrete event simulation systems: communication, computation, and 
memory.  
Winter Simulation Conference 2015: 2836-2847 

11.  Nandakishore Santhi, Stephan Eidenbenz, Jason Liu:  
The simian concept: parallel discrete event simulation with interpreted languages and just-in-time compilation.  
Winter Simulation Conference 2015: 3013-3024 
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Presentations 

1. NECDC 2016 at LANL: SNAPSim, Joe Zerr, February 2016 

2. CPAM Review at LANL: SNAPSim, Joe Zerr, April 2016 

3. CPAM Review at LANL: Simian PDES Engine, N. Santhi, April 2016 

4. CPAM Review at LANL: PPT GPU Model, G. Chapuis, April 2016 

5. Salishan Conference (Oregon): Performance Prediction Toolkit, Jason Liu, April 2016 

6. ModSim Workshop (PNNL): Performance Prediction Toolkit, Jason Liu, July 2016 

7. JOWOG-34: PPT overview, S. Eidenbenz, February 2017 

+ conference proceedings presentations 
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Software 

1.  Simian – A Parallel Discrete Event Simulation Engine for 
Interpreted Languages and Just-in-time Compilation 

–  Open-sourced December 2015 
–  Includes Python, Lua, and Javascript versions 
–  Includes LA-PDES Benchmark app (developed as part of this DR) 

2.  mpi4js – An MPI Interface for Javascript 
–  To be open-sourced Spring 2017 

3.  Performance Prediction Toolkit - PPT 
–  Open-sourcing planned after stabilization, in particular on hardware model side 
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Table of Contents 

•  Introduction: Performance Prediction Toolkit (PPT) 
•  Application Models 
•  Middleware Models 
•  Hardware Models 
•  Parallel Discrete Event Simulation – Simian 
•  List of Publications, Presentations 
•  Outlook 
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Outlook 1/3 

•  Technical Goals 
–  Improve quality of memory hierarchy, pipelining, prefetching models 

§  Resort to cycle-level simulation for (static) basic blocks 
–  Improve scalability of prediction capability 

§  Communication model drives event count at low MinDelays 
§  Moving away from PDES-only approach, coupling with analytics 
§  More aggressive use of application-specific speed-up tricks 

-  Use of MPI/Interconnect model only when clearly needed 
-  Learning scaling behavior at smaller rank-count 

§  Increased use of pypy (Just-in-time Compilation for Python) 
§  Lua or JS-based implementations (1-2 magnitude improvement) 

–  Add Legion as Middleware model 
– Code clean-up and open-sourcing 
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Outlook 2/3 

•  Novel Computing Performance Prediction 
–  Leverage of FY16 (reserve) investments in ASIC design for 

Molecular Dynamics and other mission-relevant applications has 
been taken over by ASC’s Beyond Moore’s Law thrust at 100k 
funding level 

–  FY16 Familiarization with DWave Quantum Computing 
§  Potential predictive capability for embedding algorithms onto 

Dwave’s Chimera graph 
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Outlook 3/3 

•  Outreach Goals 
–  Integration into work flows of multiple ECP projects 

§  Codesign centers, ATDM 
–  Early NSCI/ECP adopters 

§  Molecular Dynamics (A. Voter) 
§  Beyond Moore’s Law (N. Santhi) 

–  Adoption by PARTISN, IMC teams  
–  Other suggestions? 
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APPENDIX 
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Performance Prediction Team FY15/16 

Stephan Eidenbenz (PI)  NSEC 
Joe Zerr (co-PI)   CCS-2 
 
Nandkishore Santhi  CCS-3 
Eun Jung Park (PD)  CCS-3 
Guillaume Chapuis (PD)  CCS-3 
Sunil Thulasidasan   CCS-3 
Hristo Djidjev   CCS-3 
Patrick Kelly   CCS-3 
Ben Reidys  (HS)   CCS-3 
 
Jason Liu   Florida Intl U 
Mohammad Obaida (GRA)  Florida Intl U 
Ahmed Kishwar (GRA)  Florida Intl U 

Balu Nadiga   CCS-2 
Gabe Rockefeller   CCS-2 
Chris Fryer   CCS-2 
Randy Baker   CCS-2 
Max Rosa   CCS-2 
Kris Garrett (PD)   CCS-2 
 
Phil Romero   HPC-1 
Mike Warren   T-2 
Steve Nolen   XCP-3 
Qiang Guan (PD)   HPC-5/CCS-7 
Rick Zamora (PD)   T-1 
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Code 

Simian – Parallel Discrete Simulation 
Engine 

Hardware Model 
Library 

•  Clusters 
Mustang, Trinity, Cielo, Titan 

•  Nodes, Cores 
AMD Opteron, KNL, 
MacPro 

•  Accelerators 
K20X, K40, K6000, 
M2090, Pascal 

•  Interconnect 
Gemini 3D Torus 
MPI 

•  File system (Lustre) 
 

Application 
Simulator 
Library 
 
Benchmark Apps 
•  PolyBenchSim 
•  ParboilSim 

Production Apps 
•  SNAPSim 
•  SPHSim 
•  SpecTADSim 

Performance Prediction Toolkit (PPT):  
Rapid Prototyping Modeling (Python or Lua): Simple, Modular 

Data 
Learned Time Functions  

Hardware Specs Data 
 
Mustang, Haswell, IvyBridge, 
SandyBridge, Vortex  

Application 
Instrumentation Data 
 
PolyBench, SNAP, SPH, CloverLeaf 

Status: January 2016 
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Modeling the Computing Stack: Select Level of 
HW Detail based on Suspected Bottleneck Resources 

Hardware -> Entities Software -> Processes 
Cluster Equation, Method 
Nodes, Interconnect/Network Algorithm 
Cores, (Main) Memory High-level Language  

(C, Python, Fortran) 
HW Threads, ALU, Vector units Intermediate Representation (IR) 
Registers Machine Code, Assembly 
Memory Cache Levels Prefetching, Purging 
Pipelines Pipelining, Speculative execution 
… … 

Hardware 
architecture-
independent 
software 
specification 

Processes 
implemented 
in hardware 

JAN 2016 
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Codesign Performance Modeling Paradigm 

•  Hardware = Entities at a chosen level of detail that could 
be bottleneck resources 

•  Software = Processes running on entities 
•  Processes interact with and wait for other processes on 

different (or same) entities 
•  Processes advance their local time (“sleep”) to mimic 

computation or other resource usage not modeled in 
more detail 

JAN 2016 



Slide 60 U N C L A S S I F I E D 

Performance Prediction Toolkit - Repository 

•  Introduction: Performance Prediction Toolkit (PPT) 
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Discrete Event Simulation (DES) Processes Events of a 
Simulated System at Discrete Time Steps  

61	

Time 

Event 
1.  Time stamp 
2.  Destination 

Entity 
3.  Handler 
4.  Data 

 

Event Queue  
Data Structure 

Entity 

Event 
1.  Time stamp 
2.  Destination 

Entity 
3.  Handler 
4.  Data 

 

Event 
1.  Time stamp 
2.  Destination 

Entity 
3.  Handler 
4.  Data 

 

. . . 

ID 
Handler: 
•  Process event 
•  Create new 

events in Q 

Entity 
ID 
Handler: 
•  Process event 
•  Create new 

events in Q 

. . . 

Main Loop: 
While Event Queue not empty



Pop next event;


Advance current time;


Call Handler function 


on destination entity;


Current Time 
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Parallel Discrete Event Simulation (PDES) Synchronizes 
Multiple Time Lines 

62	

Time 
 
 Logical Process (LP)  

 
 
 

 
 

Time 
 
 Logical Process (LP)  

 
 
 

 
 

. . . 

•  The local current times of LPs synchronized through 
MPI_All_Reduce calls 

•  Entities live on one LP; handlers can create events with 
destination entities on other LPs through MPI_send calls 

•  Cross LP-events get time stamps at least MinDelay into future  
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Related Work: HPC Simulations 

•  Full system simulators:   
–  Simics, SimpleScalar, GEM5, COTSon, PTLsim, Asim 

•  Analytical tools:   
–  TAU, Vampir, HPCToolkit, Paraver, PACE, ASPEN, Palm, GROPHECY 

•  Processor/core simulators:  
–  McSimA+, Zsim, Manifold 

•  Memory system simulators (DRAM, NVM, Cache):  
–  DRAMSim, USIMM, DrSim, Ramulator, NVMain 

•  NoC simulators:  
–  BookSim, GARNET, DARSIM, HORNET, TOPAZ, DNOC 

•  FPGA-based simulators:  
–  Ramp Gold, HAsim, DART, Arete 
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Related Work: Performance Prediction 

•  PPT (LANL): physics-application oriented suite of performance prediction 
models for large-scale systems. Python, Lua. Includes hardware 
interconnect and node-level models, MPI and OpenMP, and a set of 
parameterized physics codes models 

•  BigSim (UIUC): for performance prediction of large-scale parallel  
machines (with relatively simple interconnect models), implemented in 
Charm++ and MPI, shown to scale up to 64K ranks 

•  xSim (ORNL): scale to128M MPI ranks using PDES with lightweight 
threads, include various interconnect topologies (high-level models, e.g., 
network congestion omitted) 

•  SST and SST Macro (SNL): a comprehensive simulation framework, 
separate implementation, one intended with cycle-level accuracy and the 
other at coarser level for scale 

•  CODES (ANL):  focused on storage systems, built on ROSS using reverse 
computation simulation that scales well 


